

Comune di Sant'Agnello

CORSO DI FORMAZIONE

Monitoraggio ed identificazione dinamica delle strutture

Dipartimento di Strutture per Ingegneria ed Architettura

Mercoledì 29 Gennaio 2025

RELATORE Prof. Ing. Mariano Modano

Il monitoraggio Strutturale

Il monitoraggio delle strutture civili rappresenta un elemento fondamentale per garantire la sicurezza, la durabilità e la funzionalità delle strutture e delle infrastrutture.

Quando è utile monitorare le strutture

Per le strutture è sempre estremamente utile monitorare dei parametri che diano informazioni sullo stato di salute dell'opera, ma il monitoraggio diventa poi indispensabile quando vi è necessità di adeguare le opere oppure di intervenire in presenza di dissesti o danneggiamenti

Cosa e come monitorare

Abbiamo due modi per monitorare una struttura; con monitoraggio statico e con monitoraggio dinamico

Il monitoraggio Statico

Di solito questo monitoraggio viene utilizzato quando la struttura mostra difetti oppure dissesti dovuti a cause esterne.

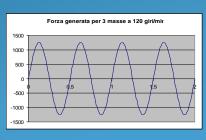
Statico fornisce RESISTENTE della struttura ed è un elemento di fondamentale importanza nella progettazione degli interventi

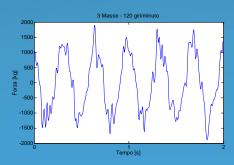
Il monitoraggio Dinamico

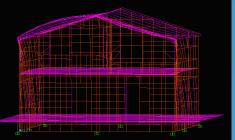
La tipologia di monitoraggio dinamico è più complessa e fornisce indicazioni sulle proprietà dinamiche intrinseche della struttura.

parametri misurati consentono di valutare, nel tempo, eventuali variazioni dello stato di salute dell'opera . Forniscono inoltre parametri fondamentali per la corretta modellazione.

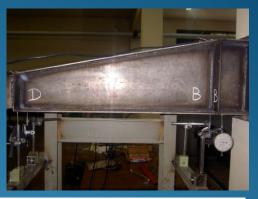
Parametri misurati in fase di monitoraggio


Monitoraggio Statico


- Deformazioni
- •Spostamenti
- •Forze
- •Quadri fessurativi •Stati di coazione

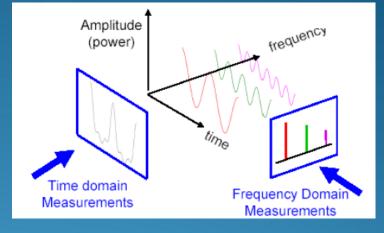

Monitoraggio Dinamico

- Accelerazioni
- Frequenze (Periodi propri della struttura)Forme modali
- Smorzamento
- •Velocità e spostamenti in fase di oscillazione



Monitoraggio Statico

- Deformazioni
 - Deformometro
 - Strain gauges
- •Spostamenti
 - Comparatori centesimali Stazione topografica
- Forze
 - Celle di carico
- •Quadri fessurativi
 - fessurimetri, comparatori a bottoni
- •Stati di coazione
 - -precompressione strain gauges



Strumentazione Monitoraggio Dinamico

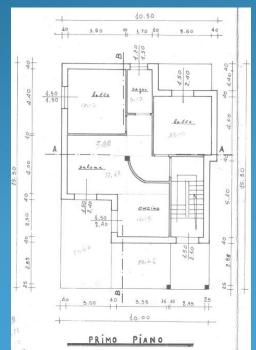
Monitoraggio Dinamico

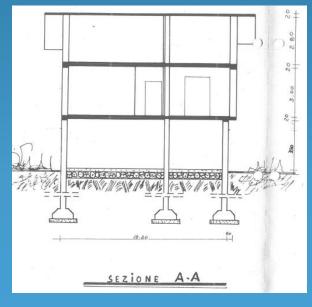
- Accelerazioni
 - 1. Accelerometri
- •Frequenze (Periodi propri della struttura)
- •Forme modali
- •Smorzamento
- •Velocità e spostamenti in fase di oscillazione

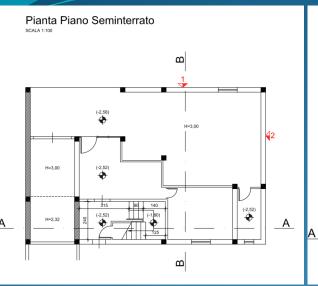
Monitoraggio Statico

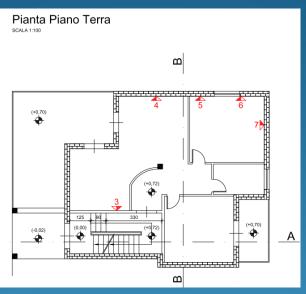
- •Spostamenti
 - Comparatori centesimali

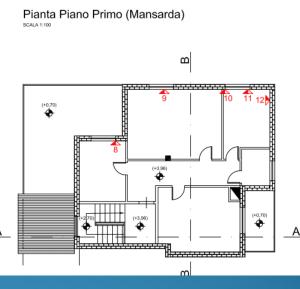
Posizionamento della base di lettura ortogonalmente alla andrebbero misurati lesione, in taluni casi anche spostamenti comparatore centesimale negli alloggi e leggere la misura. Ripetere la misurazione più volte e poi fare la

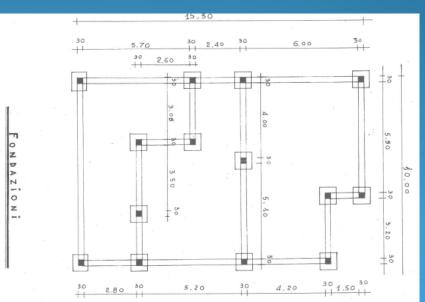


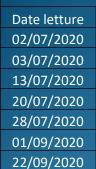


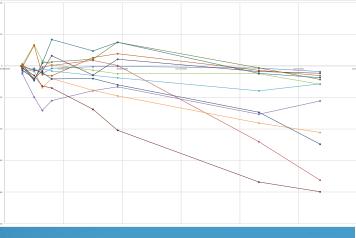








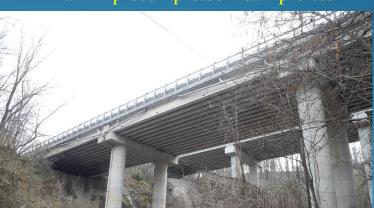


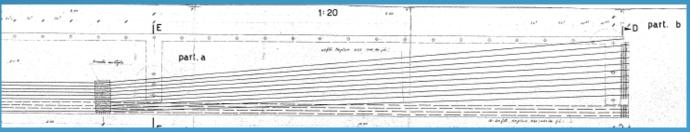


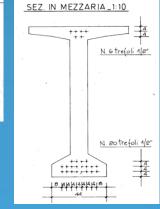
20/01/2021 13/03/2021

Monitoraggio di uno stato di presollecitazione

Monitoraggio Statico

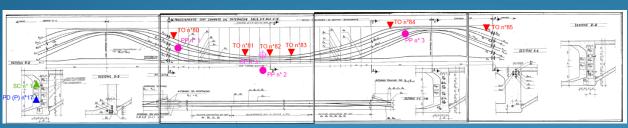

- Deformazioni
- 1. Strain gauges estensimetriStati di coazione (precompressione)

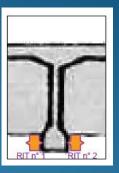

Viadotto autostradale


Travi in precompresso – cavi pre-tesi

Viadotto autostradale

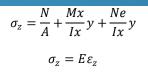
Travi in precompresso – cavi post-tesi




Ordine Ingegneri di Napoli Comune di Sant'Agnello

Prove di rilascio tensionale

ANALISI SPERIMENTALE FINALIZZATA ALLA DETERMINAZIONE DELLO STATO DI **PRECOMPRESSIONE**



Descrizione sintetica	Simbologia	Num. Tot.
Microscasso Saggio vistino del cavi da procompressione finalizzato al riconoscimiento geometrico del numero e del diametro del filtretot; se ubicato in comispondenza della testate si fomiscino informazioni sulle caratteristiche di ancorraggio del cavi	MSC n*	2
Rillevo Cavi di Precompressione Rillevo da esegursi con metodi combinatti georadar ad atla frequenza (1600MHz), pacometro, endoscopie, saggi visivi, etc.	E RCP n*	6
Prova di rilascio tensionale del calcestruzzo precompresso da eseguiroi secondo le specifiche ASPI.	BIT nº	8
Prova di pull-out [*] [*] Tali prove sono associate alle prove di rilascio tensionale	⊗rLon*	0
Durametrica Vickers Prova non distruttiva per determinare le caratteristishe meccaniche dell'accialo ammonico integro	▲ DUR n*	7

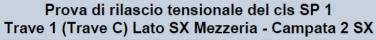
 M_x = Momento carichi permanenti

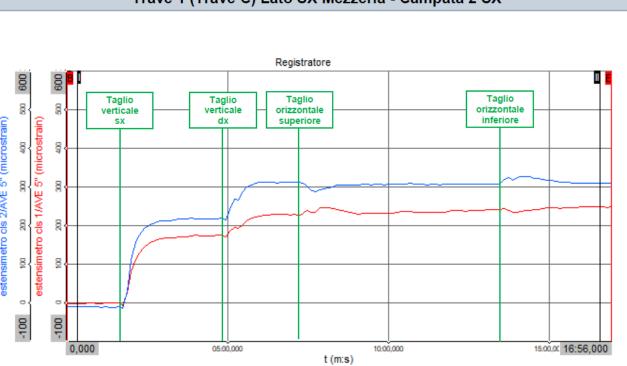
e= Eccentricità sforzo Normale di Precompressione

y= Quota di misurazione della $\sigma_{\!\scriptscriptstyle Z}$

 I_x = Momento di interzia della sezione

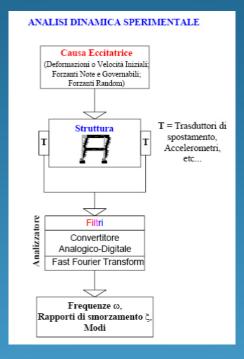
A = Area della sezione





 $\sigma_z = \frac{N}{A} + \frac{Mx}{Ix}y + \frac{Ne}{Ix}y$

- Valutazione della tensione media misurata su ambo i lati della trave;
- valutazione con modello FEM della tensione agente per i carichi permanenti;
- Determinazione dell'effettiva tensione cui i trefoli sono sottoposti;
- Valutazione dello sforzo normale risultante nei cavi;
- Confronto tra la tensione di progetto e tensione letta per valutare la perdita di precarico media riscontrata nei cavi.



Monitoraggio Dinamico e identificazione strutturale

A seconda del tipo di eccitazione le suddette prove si distinguono in:

PROVE CON ECCITAZIONE AMBIENTALE (OMA)

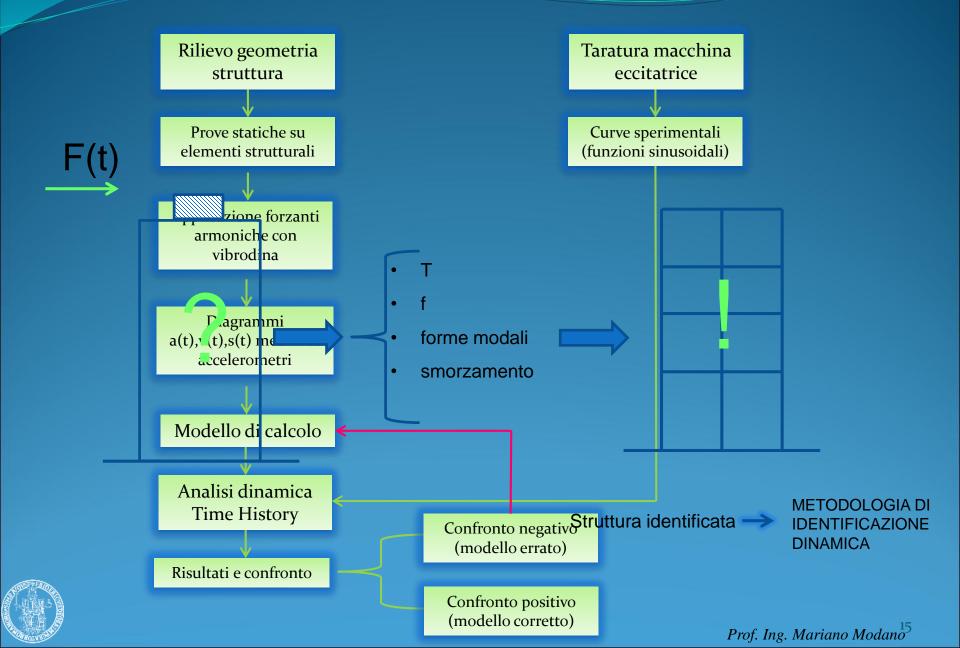
Forzanti indotte dal vento o dal traffico

PROVE CON ECCITAZIONE FORZATA (EMA)

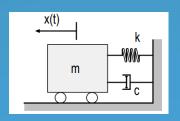
Forzanti indotte da carichi applicati ad hoc nella fase sperimentale

La struttura viene sottoposta a prove dinamiche per:

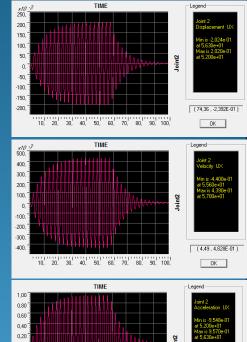
- · identificare un modello numerico idoneo a rappresentare la realtà strutturale del manufatto.
- calcolare direttamente la risposta della struttura a fronte di qualsiasi azione dinamica agente con caratteristiche note (ad esempio un sisma o un carico dinamico d'esercizio);
 - •Forzamento dinamico della struttura reale
 - Acquisizione dati accelerometrici
 - •Calibrazione dei modelli di calcolo

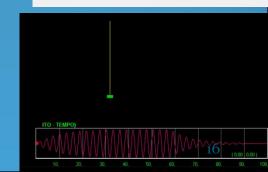


Casi di studio sviluppati mediante Analisi Dinamica sperimentale che identifica le strutture dal punto di vista dinamico


Abbiamo utilizzato un sistema di forzamento armonico

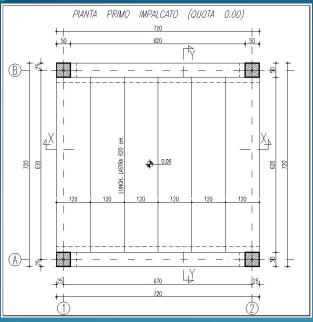
Tre casi di studio EMA (Experimental Modal Analysis)

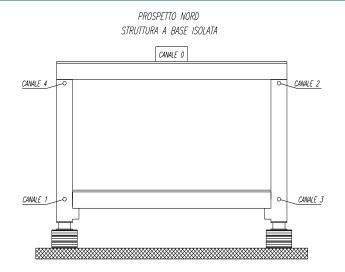

- Edificio a base fissa e a base isolata
- Edificio in acciaio
- Edificio con sistema costruttivo brevettato

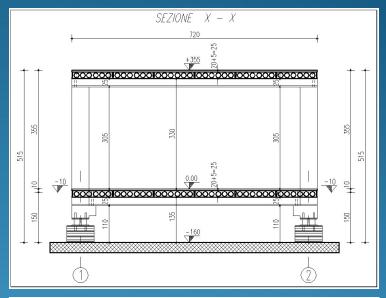

Setup sperimentale

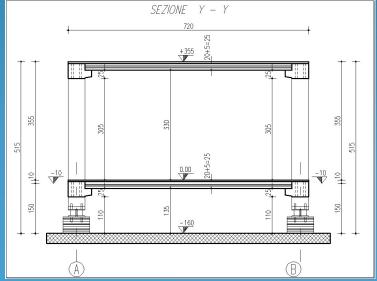
- Vibrodina genera forzanti armoniche con intensità proporzionale alla frequenza
- Accelerometri (6 episensor, 6 wireless, 6 miniaccelerometri)
- Scheda acquisizione e software di gestione

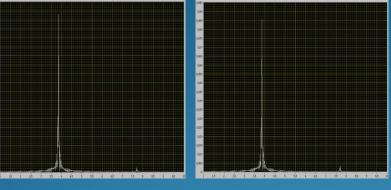
$$m\ddot{x} + c\dot{x} + kx = F_0 \sin \omega t$$

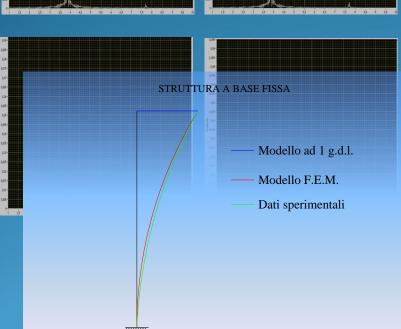






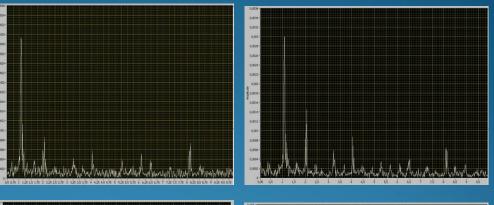


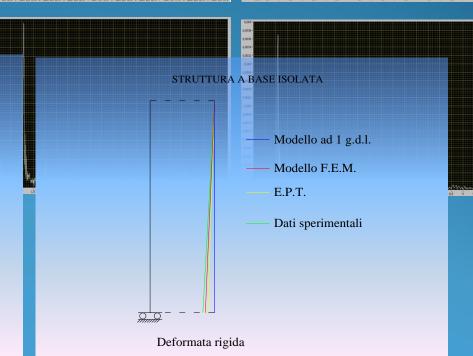




ordine ingegneri di Napon Comune di Sant'Agneno

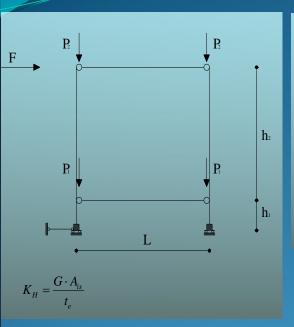
Accelerazioni in corrispondenza dei pilastri

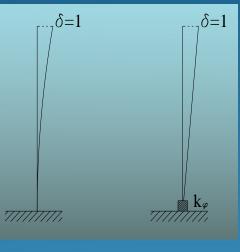

STRUTTURA A BASE FISSA

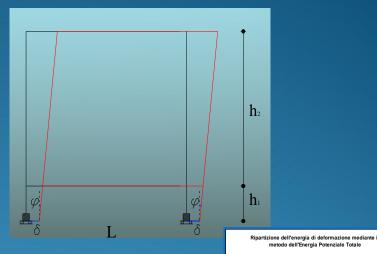


Deformata

STRUTTURA A BASE ISOLATA






 $E_{t} = K_{is} \cdot \delta^{2} + K_{str} \cdot \varphi^{2} - F \cdot \left[\delta + \varphi \cdot (h_{1} + h_{2})\right] - 2 \cdot P_{2} \cdot (h_{1} + h_{2}) \cdot \frac{\varphi^{2}}{2} - 2 \cdot P_{1} \cdot h_{1} \cdot \frac{\varphi^{2}}{2}$

FEM

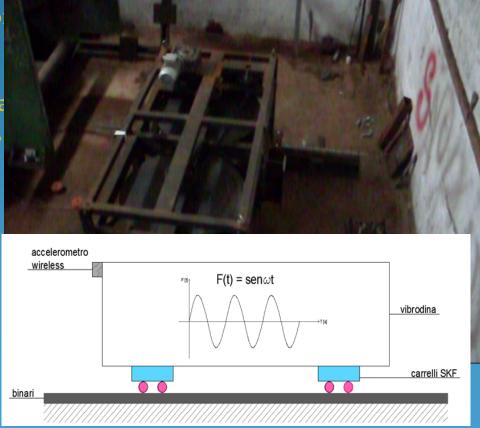
- Elementi monodimensionali
- Assenza di impalcato rigido
- Analisi dinamica lineare (*)
- Materiale elastico lineare
- Winstrand (Enexsys)

$$\varphi = \frac{F \cdot (h_1 + h_2)}{2 \cdot \left[K_{str} - P_2 \cdot (h_1 + h_2) - P_1 \cdot h_1 \right]}$$

Commento dei risultati ottenuti

- Le prove dinamiche hanno consentito di calibrare adeguatamente un modello di calcolo anche con gli isolatori sismici.
- La particolare semplicità della struttura ha consentito di mettere a punto la procedura di identificazione dinamica anche per successive prove su strutture più complesse;
- E' emerso che con la tipologia di isolatore utilizzato nella struttura BIS mediante l'approccio con il metodo EPT oltre il 90% dell'energia elastica viene assorbita dal sistema di isolamento

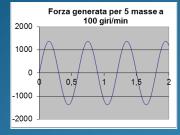
 $f_{r}(t) = 2 * m * r * \omega^2 * sen\omega t$


Per assicurarsi che le forzanti prodotte dalla macchina eccitatrice coincidano con quelle calcolate teoricamente, la vibrodina è stata tarata in laboratorio.

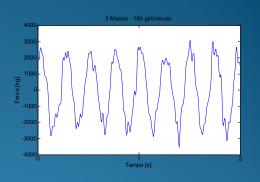
Lo schema di funzionamento per la misurazione della forzante e la calibrazione della vibrodina è il seguente:

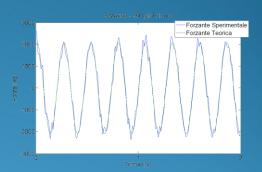
Vibrodina - Taratura della forzante armonica

Assenza di attività sperimentale in questo campo



$F_{y}(t) = 2 * m * r * \omega^{2} * sen\omega t$

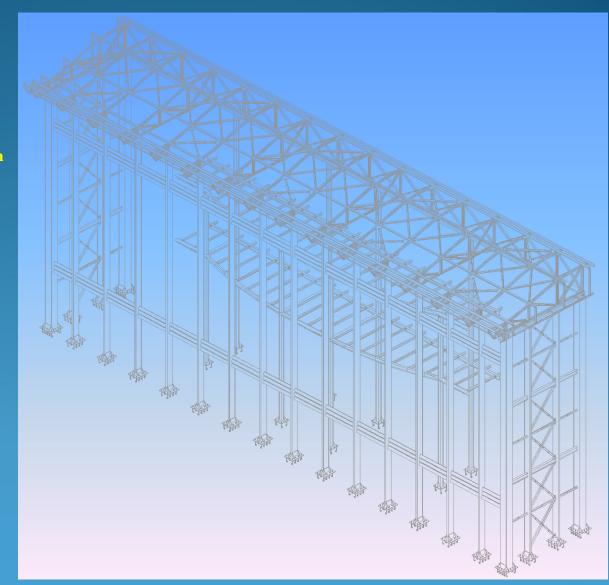

Vibrodina - Taratura della forzante armonica



- Unico lavoro di questo genere, non è stato trovato alcun riferimento in letteratura
- Individuazione dei limiti e degli scostamenti della macchina dal funzionzionamento teorico
- Acquisizione risposta a tutte le frequenze e con diverse condizioni di carico delle masse per creare un database da cui estrarre le forzanti per inserimento in modelli FEM atti a simulare le prove dinamiche

Struttura in acciaio

ANALISI DINAMICA SPERIMENTALE FINALIZZATA ALLA VERIFICA DELLA FACCIATA VETRATA



Struttura in acciaio

ANALISI DINAMICA SPERIMENTALE FINALIZZATA ALLA VERIFICA DELLA FACCIATA VETRATA

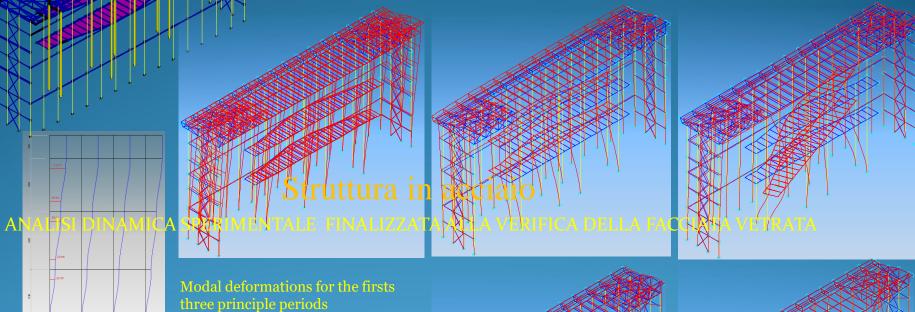
- Lunghezza (y) = 30m
- Lunghezza (x) = 6m
- Altezza = 24 m
- Colonne d'angolo 0.5x0.5 m
- Distanza tra le colonne di facciata <2m
- 2 impalcati interni
- Colonne posteriori tubolari

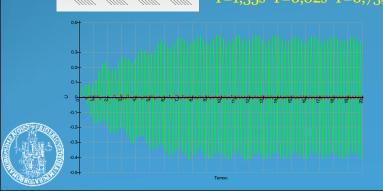
FINALIZZATA ALLA VERIFICA DELLA FACCIATA VETRATA

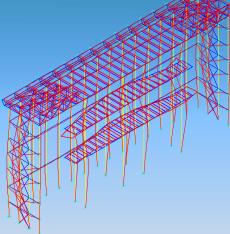
Fx,Fy

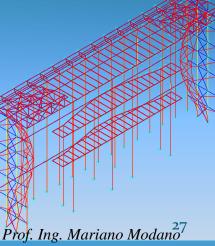
Struttura in acciaio

ANALISI DINAMICA SPERI




<u>Commento dei risultati ottenuti</u>


- Analisi di tipo time history
- Simulazione FEM della prova dinamica
- Sistema wireless copriva raggio di oltre 15 m.
- Calibrazione del modello di calcolo sulla base delle deformate modali riscontrate sperimentalmente


FEM

- Elementi monodimensionali
- Assenza di impalcato rigido
- Analisi dinamica lineare (*)
- Materiale elastico lineare
- Winstrand (Enexsys)

Convenzione di Studio e Ricerca tra Dipartimento Ingegneria Strutturale e Presud Acanfora Srl:

"Analisi della risposta strutturale di pannelli portanti con struttura mista acciaio-cls e caratterizzazione del comportamento dinamico del sistema di prefabbricazione brevettato dalla Pre.Sud Acanfora srl" – Maggio Ottobre 2012

La struttura è costituita da 2 impalcati (piano rialzato e primo piano), con un'area

È composta da:

- pannelli portanti;

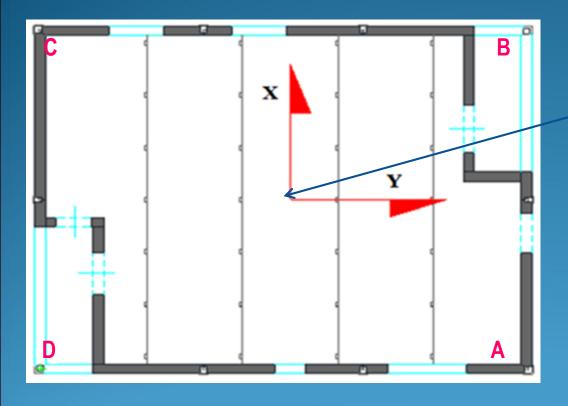
Prof. Ing. Mariano Modano

Ordine Ingegneri di Napoli Comune di Sant'Agnello

Prove statiche su macroelementi finalizzate ad individuare le sollecitazioni di progetto

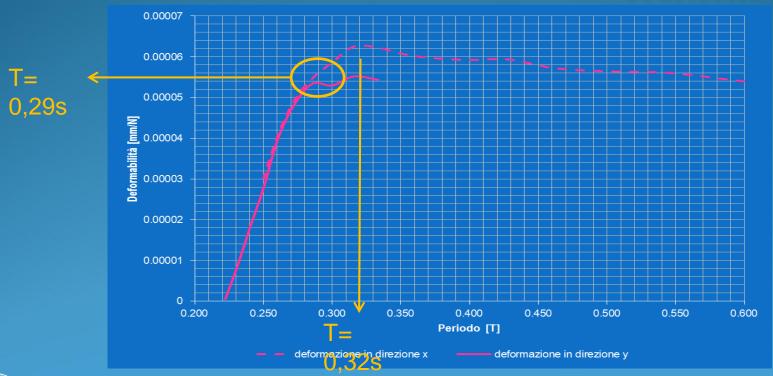
Prove a flessione pannello fuori piano Prove a taglio pannello nel piano Prove dinamiche con vibrodina Modellazione FEM e calibrazione modello Analisi dinamica Time History per simulazione test dinamici Individuazione spessori equivalenti

Modello FEM Assenza di impalcato rigido Materiale elastico lineare Winstrand (Enexsys)



La struttura è sottoposta a prove dinamiche fissando la vibrodina sul solaio del secondo livello, mediante un sistema di piastre e tirafondi, prima in direzione x (lato più corto) e poi in direzione y (lato più lungo) in modo da ottenere un effetto forzante nelle due diverse direzioni.

Le misurazioni di accelerazioni, velocità e spostamenti avvengono grazie a quattro **accelerometri** collocati nei quattro angoli del secondo impalcato.

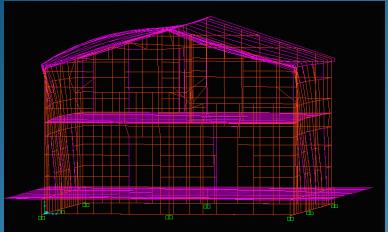


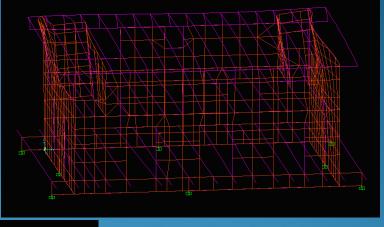
Struttura prefabbricata – sistema innovativo brevettato

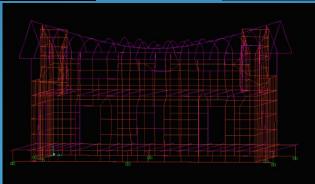
dati sono influenzati dal valore della forzante e, quindi, da essi non sono deducibili i periodi propri della struttura che possono essere maggiori o uguali a quelli registrati. È necessario depurare i risultati dalle forzanti indotte dalla vibrodina. A tale scopo si effettua il rapporto:

forzanti svilunpate

<u>DEFORMABILITÀ</u> STRUTTURALE





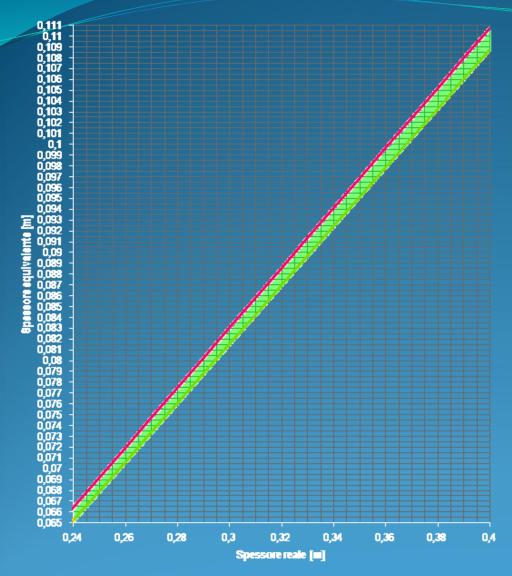

SPESSORI EQUIVALENTI E MODI DI VIBRARE

Procedendo per tentativi ed utilizzando per la modellazione delle **pareti** il cls **C35/45** (presente nello strato interno del pannello) si ricava uno **spessore equivalente** per la **parete inferiore** pari a **8,7 cm** ed uno per quella **superiore** pari a **7,2 cm**.

Primo modo in direzione x (periodo T = 0,322 sec)

Terzo modo in direzione y (periodo T = 0,286 sec)

Secondo modo in direzione y (periodo T = 0,309 sec)



La retta di trasformazione rispetto alla parete superiore è ottenuta moltiplicando il "coefficiente di conversione" della parete superiore per gli spessori reali utilizzabili nella pratica:

Allo stesso modo si ottiene la retta di trasformazione della parete inferiore

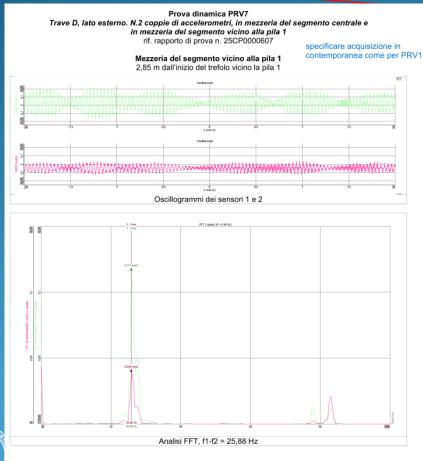
Commento dei risultati ottenuti

- Con le analisi di tipo time history è stato calibrato il modello ottenendo periodi e spostamenti uguali al modello sperimentale
- E' stato proposto e testato una procedura di modellazione della struttura in fase di progettazione:
- Sono stati individuate le sollecitazioni di design ai fini del deposito della struttura al Genio Civile;
- Sono stati individuati i limiti costruttivi e le altezze massime in zona sismica realizzabili con tale tecnologia
- LA STRUTTURA E' STATA PROGETTATA E REALIZZATA CON DEPOSITO E AUTORIZZAZIONE SISMICA DEL GENIO CIVILE DI MANTOVA

Trasformazione rispetto alla parete superiore

Prove vibrazionali

ANALISI FINALIZZATA ALLA DETERMINAZIONE DELLO STATO DI PRECOMPRESSIONE



Prove vibrazionali

$$f_0=rac{1}{2L}\sqrt{rac{T}{\mu}}.$$

Conclusioni

Il monitoraggio strutturale rappresenta uno strumento fondamentale per garantire la sicurezza, l'affidabilità e la durata delle opere ingegneristiche. Attraverso l'utilizzo di tecnologie avanzate e sistemi di rilevamento in tempo reale, è possibile ottenere dati essenziali per la valutazione dello stato di salute delle strutture.

I principali vantaggi del monitoraggio strutturale includono:

- **Prevenzione dei rischi**: la capacità di individuare anomalie o degradi prima che possano compromettere la sicurezza.
- Ottimizzazione della manutenzione: permette di pianificare interventi mirati, riducendo i costi e i tempi di fermo delle strutture.
- **Prolungamento della vita utile**: l'analisi continua delle condizioni consente di adottare strategie per preservare le prestazioni delle strutture nel tempo.
- **Riduzione dei costi complessivi**: intervenire in modo predittivo e non reattivo limita le spese straordinarie e prolunga l'efficienza delle opere.

GRAZIE PER L'ATTENZIONE

Mariano Modano

